Fuzzy discretization of feature space for a rough set classifier

نویسندگان

  • Amitava Roy
  • Sankar K. Pal
چکیده

A concept of fuzzy discretization of feature space for a rough set theoretic classifier is explained. Fuzzy discretization is characterised by membership value, group number and affinity corresponding to an attribute value, unlike crisp discretization which is characterised only by the group number. The merit of this approach over both crisp discretization in terms of classification accuracy, is demonstrated experimentally when overlapping data sets are used as input to a rough set classifier. The effectiveness of the proposed method has also been observed in a multi-layer perceptron in which case raw (non-discretized) data is considered as input, in addition to discretized ones. 2002 Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts

High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...

متن کامل

ROUGH SET OVER DUAL-UNIVERSES IN FUZZY APPROXIMATION SPACE

To tackle the problem with inexact, uncertainty and vague knowl- edge, constructive method is utilized to formulate lower and upper approx- imation sets. Rough set model over dual-universes in fuzzy approximation space is constructed. In this paper, we introduce the concept of rough set over dual-universes in fuzzy approximation space by means of cut set. Then, we discuss properties of rough se...

متن کامل

Fuzzy-rough Information Gain Ratio Approach to Filter-wrapper Feature Selection

Feature selection for various applications has been carried out for many years in many different research areas. However, there is a trade-off between finding feature subsets with minimum length and increasing the classification accuracy. In this paper, a filter-wrapper feature selection approach based on fuzzy-rough gain ratio is proposed to tackle this problem. As a search strategy, a modifie...

متن کامل

Diagnosis of the disease using an ant colony gene selection method based on information gain ratio using fuzzy rough sets

With the advancement of metagenome data mining science has become focused on microarrays. Microarrays are datasets with a large number of genes that are usually irrelevant to the output class; hence, the process of gene selection or feature selection is essential. So, it follows that you can remove redundant genes and increase the speed and accuracy of classification. After applying the gene se...

متن کامل

A Fuzzy-based Rough Sets Classifier for Forecasting Quarterly Pgr in the Stock Market (part Ii)

Three hybrid models are proposed for solving the practical problems of forecasting quarterly PGR (profit growth rate) and based on six essential components: experiential knowledge (EK), feature selection method (FSM), discretization method (DM), fuzzy set theory (FST), rule filter (RF) and rough set theory (RST). Following the Part I (the previous paper), a called PGR dataset collected from the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition Letters

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2003